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ABSTRACT 
 
 Software metrics may be used in fault prediction models to improve software quality by predicting fault 
location. There are lots of different software metrics discovered and used for defect prediction in the literature. Instead of 
dealing with so many metrics, it would be practical and easy if we could determine the set of metrics that are most 
important and focus on them more to predict defectiveness. We use Bayesian networks to determine the probabilistic 
influential relationships among software metrics and defect proneness. Furthermore, the applicability of the Markov 
blanket principle for feature selection, which is a natural extension to Bayesian Network theory, is investigated. The 
results, both in terms of the Area Under Curve and recently introduced H-measure are rigorously tested using the 
statistical framework of Demsar.It is concluded that simple and comprehensible networks with less nodes can be 
constructed using Augmented Bayesian Network Classifiers. Furthermore, it is found that the aspects of 
comprehensibility and predictive performance need to be balanced out and also the development context is an item which 
should be taken into account during model selection. 
 
Keywords: Software fault prediction, Bayesian networks, Data mining, Classification, Comprehensibility, Input query, 
Output query. 
 
 
1. INTRODUCTION 

Developing a defect free software system is very 
difficult and most of the time there are some unknown 
bugs or unforeseen deficiencies even in software 
projects where the principles of the software 
development methodologies were applied carefully. 
Due to some defective software modules, the 
maintenance phase of software projects could become 
really painful for the users and costly for the 
enterprises, that is why predicting the defective modules 
or files in a software system prior to project 
development is a crucial activity, since it leads to a 
decrease in the total cost of the project and an increase 
in overall project success rate. 
 
Defect prediction will give one more chance to the 
development team to retest the modules or files for 
which the defectiveness probability is high. By 

spending more time on the defective modules and no 
time on the non-defective ones, the resources of the 
project would be utilized better and as a result, the 
maintenance phase of the project will be easier for both 
the customers and the project owners. Although there is 
diversity in the definition of software quality, it is 
widely accepted that a project with many defects lacks 
quality. Methodologies and techniques for predicting 
the testing effort, monitoring process costs and 
measuring results can help in increasing efficiency of 
software testing. Being able to measure the fault-
proneness of software can be a key step towards 
steering the software testing and improving the 
effectiveness of the whole process. This motivates the 
use of software fault prediction models, which provide 
an upfront indication of whether code is likely to 
contain faults. Predictive modeling is the process by 
which a model is created or chosen to try to predict the 
probability of an outcome. The objective of a fault 
proneness model is to identify faulty classes and focus 
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testing effort on them. Furthermore, due to experience 
that specific subset of predictors from the suite which 
seem to show a significant relationship to fault 
proneness differs from system to system, therefore to 
predict software quality accuracy is always to be a hard 
work. We use Area under Curve (AUC) obtained from 
Receiver Operating Characteristics Curve (ROC) in 
order to evaluate the performance of the machine 
learning classification techniques. ROC analysis 
provides optimal cut off point that provides balance 
between number of classes predicted as faulty and 
number of classes predicted as non faulty. 
 

Bayesian network is a graphical representation 
that shows the probabilistic causal or influential 
relationships among a set of variables that we are 
interested in. There are a couple of practical factors for 
using Bayesian networks. First, Bayesian networks are 
able to model probabilistic influence of a set of 
variables on another variable in the network. Given the 
probability of parents, the probability of their children 
can be calculated. Second, Bayesian networks can cope 
with the missing data problem. This aspect of Bayesian 
networks is very important for defect prediction since 
some metrics might be missing for some modules in 
defect prediction data sets. Looking at the defect 
prediction problem from the perspective that all or an 
effective subset of software or process metrics must be 
considered together besides static code measures. 
Bayesian network model is a very good candidate for 
taking into consideration several process or product 
metrics at the same time and measuring their effect. 
 

In this paper, we build a Bayesian network 
among metrics and defectiveness, to measure which 
metrics are more important in terms of their effect on 
defectiveness and to explore the influential 
relationships among them. As a result of learning such a 
network we find the defectiveness probability of the 
whole software system, the order of metrics in terms of 
their contribution to accurate prediction of 
defectiveness, and the probabilistic influential 
relationships among metrics and defectiveness. 
 
 
2. ARCHITECTURE OF DATA MINING 
 
2.1 DATA BASE, DATAWARE HOUSE, WWW, 
OTHER INFO 
 

This is one or a set of databases, data 
warehouses, spreadsheets, or other kinds of information 
repositories. Data cleaning and data integration 
techniques may be performed on the data. 
 
 

2.2 DATABASE OR DATA WARE HOUSE SERVER 
 

The database or data ware house server is 
responsible for fetching the relevant data, based on the 
user’s data mining request. 
 
2.3 KNOWLEDGE BASE 

This is the domain knowledge that is used to 
guide the search or evaluate the interestingness of 
resulting patterns. Such knowledge can include concept 
hierarchies, used to organize attributes or attribute 
values into different levels of abstraction. Knowledge 
such as user beliefs, which can be used to assess a 
pattern’s interestingness based on its unexpectedness, 
may also be include. 
2.4 DATA MINING ENGINE 
 
This is essential to the data mining system and ideally 
consists of a set of functional modules for tasks such as 
characterization, association and correlation analysis, 
classification, prediction, cluster analysis, outlier 
analysis, and evolution analysis. 
 
2.5 PATTERN EVALUATION MODEL 
 

This component typically employs interestingness 
measures and interacts with the data mining modules so 
as to focus the search toward interesting patterns. It may 
use interestingness thresholds to filter out discovered 
patterns. 
 
2.6 USER INTERFACE 
 

This module communicates between users and the 
data mining system, allowing the user to interact with 
the system by specifying a data mining query or task 
providing information to help focus the search, and 
performing exploratory data mining based on the 
intermediate data mining results. 
 
3. RELATED WORKS 

The prediction of fault in the software is being 
studied from various viewpoints in order to estimate the 
software reliability of the individual components and 
also the probability of failure each time a software 
component is being executed. The main purpose of 
these models is to predict the fault in the software at the 
cheaper rate. 
 

Some researchers suggest the software fault 
prediction as both machine learning based and statistical 
based approaches. They investigate the previous studies 
from metrics, methods, datasets, performance 
evaluation metrics and experimental results in an easy 
and effective manner. The aspect of feature subset 
selection by using a generic backward input selection 
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wrapper is investigated. The results are subjected to 
rigorous statistical testing and indicate the ordinary least 
squares regression in combination with logarithmic 
transformation performs best. Another key finding is 
that by subset of highly predictive attributes such as 
project size, development and environmental related 
attributes, typically a significant increase in estimation 
accuracy can be obtained. 
 

More recently, predicting defect prone software 
components are an economically important activity and 
so has received a good deal of attention. A general 
framework for software defect prediction that supports 
unbiased and comprehensive comparison between 
competing prediction components has been empirically 
illustrated. The defect predictor builds models 
according to the evaluated learning schemes and 
predicts software defects with new data according to the 
constructed model. 
 

Researchers have a adopted algorithms to evaluate 
the performance metrics within a range of specific 
parameters such as speed of learning, over fitting 
avoidance and their accuracy. Besides these parameters 
we have included their benefits and limitations to unveil 
their hidden features and provide more details regarding 
their performance. We have found the Augmented 
Bayesian Network classifiers is the best as compared 
with other algorithms that can be used for the prediction 
of the fault in the software. 
 
4. AUGMENTED BAYESIAN NETWORK 
CLASSIFIERS 
 

A Bayesian Network is a directed acyclic graph 
(DAG), composed of E edges and V vertices which 
represent joint probability distribution of a set of 
variables. In this notation each vertex represents a 
variable and each edge represents the causal or 
associational influence of one variable to its successor 
in the network. 
 

Let X═{X1, X2….Xn} be n variables taking 
continuous or discrete values. The probability 
distribution of Xi is shown as P (Xi/axi) where axi’s 
represent parents of Xi if any. When there are no 
parents of Xi, then it is a prior probability distribution 
and can be shown as P (Xi). 
 

The joint probability distribution of X can be 
calculated using chain rule. 
 

P(X) ═ P (X1|X2, X3… Xn) P(X2, X3… Xn) 
 

═ P(X1|X2,….,.Xn)P(X2|X3,…,Xn)P(X3,…,Xn)  
 

═ P(X1|X2,….,Xn)P(X2|X3,…,Xn)…P(Xn-

1|Xn)P(Xn)  
 

═πi=1 P (Xi|Xi+1… Xn) 
 

Given the parents of Xi, other variables are 
independent from Xi, so we can write the joint 
probability distribution as 
 

P(X) = πi=1 P (Xi|axi) 
 
On the other hand, Bayes’ rule is used to calculate the 
posterior probability of Xi in a Bayesian network based 
on the evidence information present. We can calculate 
probabilities either towards from causes to effects P 
(Xi|E) or from effects to causes (P(E|Xi)). Calculating 
probability of effects from causes is called causal 
inference whereas calculating probability of causes 
from effects is called diagnostic inference. Figure 1 
shows a sample Bayesian network and conditional 
probability tables. Assume that we would like to 
investigate the effect of using experienced developers 
(ED) and applying unit testing methodology (UT) on 
defectiveness (FP). Furthermore, each variable can take 
discrete values of on/off, that is developers are 
experienced or not, unit testing used or not used. 
 
In Bayesian network structure learning, the search space 
is composed of all of the possible structures of directed 
acyclic graphs based on the given variables (nodes). 
Normally, it is very difficult to enumerate all of these 
possible directed acyclic graphs without a heuristic 
method. Because, when the number of nodes increases, 
the search space grows exponentially and it is almost 
impossible to search the whole space. Given a data set, 
the K2 algorithm proposed by cooper and Herskovits, 
heuristically searches for the most probable Bayesian 
network structure. Based on the ordering of the nodes, 
the algorithm network. If addition of a certain node Xj 
to the set of parents of node Xi does not increase the 
score of the Bayesian network,K2 stops looking for 
parents of node Xi further. Since the ordering of the 
nodes in the Bayesian network is known, the search 
space is much smaller compared to the entire space that 
needs to be searched without a heuristic method. 
Furthermore, a known ordering ensures that there will 
be no cycles in the Bayesian network, so there is no 
need to check for cycles too. K2 algorithm takes a set of 
n nodes; an initial ordering of the n nodes, the 
maximum number of parents of any node denoted by u 
and a database D of m cases as input and outputs a list 
of parent nodes for every node in the network. For 
every node in the network, the algorithm finds the set of 
parents with the highest probability taking into 
consideration the upper bound u for the maximum 
number of parents a node can have. 
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5. METHDOLOGY 

In this paper we predict the fault in the software by 
constructing the Augmented Bayesian network 
classifiers and then finding out the Area under Curve 
and the recently introduced H-measure value. 
 

The proposed system consists of following 
modules. 

 
Preprocessing  

 
Bayesian Network 
Construction Markov 
Blanket Feature Selection 
Area Under Curve  

H-measure  
 
 The datasets are being selected and then 
preprocessing step is done which is then undergone the 
Markov Blanket Feature Selection .The Bayesian 
network classifier is constructed to eliminate all the 
dependent variables. The K2 algorithm adopts a 
bottom-up search strategy, assuming equal prior 
probabilities for all possible for all possible network 
structures and considers all variables one by one, 
assuming some ordering in the variables. The Max-Min 
Hill-Climbing (MMHC) measure is asymptotically 
following a x2 distribution with appropriate degrees of 
freedom under the null hypothesis of conditional 
independence, which allows calculation of a p-value 
indicating the probability of falsely rejecting this null 
hypothesis. The Area under Curve and H-measure value 
is being evaluated to find out the probabilistic 
influential relationships among the variables and then 
finally the software fault is being predicted. 

 
 

 
 

      
      
      
       
 
 
 
 
 
 
 
 

Fig 1. Dataflow diagram for software fault 
prediction model 

 
 

A.PREPROCESSING 
A first important step in each data mining 

exercise is pre-processing the data. Each observation in 
the datasets consists of a unique ID, several static code 
features and an error count. First, the data used to learn 
and validate the models are selected and thus the ID as 
well as attributes exhibiting zero variance are discarded. 
Observations with a total line count of zero are deemed 
logically incorrect and are removed. Each of the 
datasets is randomly partitioned into two disjoint sets, 
i.e. training and test set consisting of respectively 2/3 
and 1/3 of the observations, using stratified sampling in 
order to preserve the class distribution. 
 
B.BAYESIAN NETWORK CONSTRUCTION 

Bayesian networks are directed acyclic graphs 
whose nodes represent random variables in the 
Bayesian sense: they may be observable quantities, 
latent variables, unknown parameters or hypotheses. 
Edges represent conditional dependencies; nodes which 
are not connected represent variables which are 
conditionally independent of each other. Each node is 
associated with a probability function that takes as input 
a particular set of values for the node’s parent variables 
and gives the probability of the variable represented by 
the node. For example, if the parents are Boolean 
variables then the probability function could be 
represented by a table of 2m entries, one entry for each 
of the 2m possible combinations of its parents being 
true of false. Similar ideas may be applied to undirected 
and possibly cyclic graphs such are called Markov 
networks. 
 
C.MARKOV BLANKET FEATURE SELECTION 

The use of Markov blanket based feature 
selection approach provides a natural solution to this 
issue. The Markov blanket (MB) of a node y is the 
union of y’s parents, y’s children and the parents of y’s 
children and is the minimal variable subset conditioned 
on which all other variables are independent of y. In 
other words, no other variables than those contained in 
the MB of y need to be observed to predict the value of 
y. For instance, the value of x can be ignored when 
predicting the value of y as it is the child of a parent of 
y and thus is no part of the MB of y. The HITON 
algorithm is used for the Markov blanket feature 
selection, which adopts the same test of conditional 
independence as the Max-Min Hill (MMHC) algorithm. 
 
D.AREA UNDER CURVE 

The single point metrics such as the Area under 
the ROC curve (AUC) were proposed. Let F1(S) be the 
probability density function of the scores for the classes 
and F1(S) the corresponding cumulative distribution 
function. The AUC can be regarded as a measure of 
aggregated classification performance as it in some 
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sense average performance over all possible thresholds. 
Moreover, the AUC has an interesting statistical 
interpretation in the sense that it is the probability that a 
randomly chosen positive instance will be ranked higher 
than a randomly chosen negative instance against the 
opposite type of misclassification. 
 
E.H-MEASURE 

If the additional knowledge of the likely values 
of c is available, Hand proposes using symmetric beta 
distribution. As no specific costs have been specified in 
the fault prediction literature, the H-measure will be 
calculated with these default values. H-measure on the 
other hand, has the benefit of explicitly, balancing the 
losses arising from classifying fault-prone as not fault-
prone instances against the opposite type of 
misclassification. In order to keep the participants 
motivated, it is advised to release early and often thus 
the cost of missing defects is perhaps lower than the 
cost of delays due to unnecessary testing. As such, the 
robustness of the H-measure with respect to changes in 
the software development context is investigated. As no 
specific costs have been specified in the fault prediction 
literature, the H- measure will be calculated with these 
default values. However, depending on the context , it 
can be argued that misclassifying a faulty instance as 
non fault-prone is more serious. 
 
6. IMPLEMENTATION 

In order to achieve the objectives and benefits 
expected from the proposed system it is essential for the 
people who will be involved to be confident of their 
role in the new system. As system becomes more 
complex, the need for education and training is more 
and more important. Once the implementation plan is 
decided, it is essential that the user of the system is 
made familiar and comfortable with the environment. A 
documentation providing the whole operations of the 
system is being developed. The first maintenance 
activity occurs because it is unreasonable to assume that 
software testing will uncover all latent errors in a large 
software system. During the use of any large program, 
errors will occur and be reported to the developer. The 
second activity contributes to a definition of 
maintenance occurs because of the rapid change that is 
encountered in every aspect of computing. The third 
activity that may be applied to a definition of 
maintenance occurs when a software package is 
successful. As the software is used, recommendations 
for new capabilities, modifications to existing functions 
and general enhancement are received from users. The 
fourth maintenance activity occurs when software is 
changed to improve future maintainability or reliability 
or to provide a better basis for future enhancements. 
 
 

7. EXPERIMENTAL EVALUATION 
The various induced models are being 

evaluated in terms of their classification performance 
and comprehensibility. A variety of performance 
measures has been used to gauge the strength of the 
classifiers. Augmented Bayesian Network Classifiers 
whose ROC curve lies above the ROC curve of the 
second classifier is superior and the point (0, 1) 
corresponds to perfect classification. 

= ∫ ( )  ( )  . 
 
The AUC can be regarded as a measure of aggregated 
classification performance as it in some averages 
performance as it in some sense averages performance 
over all possible thresholds. H-measure has the benefit 
of explicitly, balancing the losses arising from 
classifying fault-prone as not fault-prone instances 
against the opposite type of misclassification. As such, 
the robustness of the H-measure with respect to changes 
in the software development context is investigated. 
 
8. CONCLUSION AND FUTURE WORK 

The broad goal of our research is to build a 
model to analysis the causal relation between evaluable 
metrics and software quality in software development. 
Then enhance software development efficiency by 
exploring the dependence between them. In this paper, 
we apply Augmented Bayesian Network Classifiers to 
solve the problem of classifying software modules as 
defect-free or non-defect-free. The Augmented 
Bayesian Network Classifier model provides a robust 
mechanism to include diverse sources of data into the 
analysis. The machine learning models predicted in this 
paper can help the testing community to focus the 
resources on the faulty parts of the software. The 
developers can also consider the software design and 
hence take necessary corrective actions. The fault 
prediction models can help the testers in planning and 
allocating resources in early phases of software 
development. 
 

In future, besides only use one project’s data is 
not convictive enough, dataset in different software 
project which focus on different functions tends to 
present weight of each 
 
matrix. 
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