
Software Fault Prediction Models Using Augmented Bayesian Network Classifiers

Indian Journal of Communications Technology and Electronics (IJCTE)
Vol.2.No.2 2014 pp 69-74.

available at: www.goniv.com
Paper Received : 05-03-2014
Paper Accepted: 24-05-2014

Paper Reviewed by: 1. John Arhter 2. Hendry Goyal
Editor: Prof. P.Hendry

goniv Publications Page 69

SOFTWARE FAULT PREDICTION MODELS USING AUGMENTED
BAYESIAN NETWORK CLASSIFIERS

R.Nithya Rani1, M.Mathina Kani2

Department of Computer and Communication Engineering1, Department of Computer Science Engineering2
Sethu Institute of Technology, Affiliated to Anna University,

Kariapatti, Tamilnadu, 626106- India
nithireeta@gmail.com mathinakani@yahoo.co.in

ABSTRACT

 Software metrics may be used in fault prediction models to improve software quality by predicting fault
location. There are lots of different software metrics discovered and used for defect prediction in the literature. Instead of
dealing with so many metrics, it would be practical and easy if we could determine the set of metrics that are most
important and focus on them more to predict defectiveness. We use Bayesian networks to determine the probabilistic
influential relationships among software metrics and defect proneness. Furthermore, the applicability of the Markov
blanket principle for feature selection, which is a natural extension to Bayesian Network theory, is investigated. The
results, both in terms of the Area Under Curve and recently introduced H-measure are rigorously tested using the
statistical framework of Demsar.It is concluded that simple and comprehensible networks with less nodes can be
constructed using Augmented Bayesian Network Classifiers. Furthermore, it is found that the aspects of
comprehensibility and predictive performance need to be balanced out and also the development context is an item which
should be taken into account during model selection.

Keywords: Software fault prediction, Bayesian networks, Data mining, Classification, Comprehensibility, Input query,
Output query.

1. INTRODUCTION

Developing a defect free software system is very
difficult and most of the time there are some unknown
bugs or unforeseen deficiencies even in software
projects where the principles of the software
development methodologies were applied carefully.
Due to some defective software modules, the
maintenance phase of software projects could become
really painful for the users and costly for the
enterprises, that is why predicting the defective modules
or files in a software system prior to project
development is a crucial activity, since it leads to a
decrease in the total cost of the project and an increase
in overall project success rate.

Defect prediction will give one more chance to the
development team to retest the modules or files for
which the defectiveness probability is high. By

spending more time on the defective modules and no
time on the non-defective ones, the resources of the
project would be utilized better and as a result, the
maintenance phase of the project will be easier for both
the customers and the project owners. Although there is
diversity in the definition of software quality, it is
widely accepted that a project with many defects lacks
quality. Methodologies and techniques for predicting
the testing effort, monitoring process costs and
measuring results can help in increasing efficiency of
software testing. Being able to measure the fault-
proneness of software can be a key step towards
steering the software testing and improving the
effectiveness of the whole process. This motivates the
use of software fault prediction models, which provide
an upfront indication of whether code is likely to
contain faults. Predictive modeling is the process by
which a model is created or chosen to try to predict the
probability of an outcome. The objective of a fault
proneness model is to identify faulty classes and focus

Software Fault Prediction Models Using Augmented Bayesian Network Classifiers

goniv Publications Page 70

testing effort on them. Furthermore, due to experience
that specific subset of predictors from the suite which
seem to show a significant relationship to fault
proneness differs from system to system, therefore to
predict software quality accuracy is always to be a hard
work. We use Area under Curve (AUC) obtained from
Receiver Operating Characteristics Curve (ROC) in
order to evaluate the performance of the machine
learning classification techniques. ROC analysis
provides optimal cut off point that provides balance
between number of classes predicted as faulty and
number of classes predicted as non faulty.

Bayesian network is a graphical representation
that shows the probabilistic causal or influential
relationships among a set of variables that we are
interested in. There are a couple of practical factors for
using Bayesian networks. First, Bayesian networks are
able to model probabilistic influence of a set of
variables on another variable in the network. Given the
probability of parents, the probability of their children
can be calculated. Second, Bayesian networks can cope
with the missing data problem. This aspect of Bayesian
networks is very important for defect prediction since
some metrics might be missing for some modules in
defect prediction data sets. Looking at the defect
prediction problem from the perspective that all or an
effective subset of software or process metrics must be
considered together besides static code measures.
Bayesian network model is a very good candidate for
taking into consideration several process or product
metrics at the same time and measuring their effect.

In this paper, we build a Bayesian network
among metrics and defectiveness, to measure which
metrics are more important in terms of their effect on
defectiveness and to explore the influential
relationships among them. As a result of learning such a
network we find the defectiveness probability of the
whole software system, the order of metrics in terms of
their contribution to accurate prediction of
defectiveness, and the probabilistic influential
relationships among metrics and defectiveness.

2. ARCHITECTURE OF DATA MINING

2.1 DATA BASE, DATAWARE HOUSE, WWW,
OTHER INFO

This is one or a set of databases, data
warehouses, spreadsheets, or other kinds of information
repositories. Data cleaning and data integration
techniques may be performed on the data.

2.2 DATABASE OR DATA WARE HOUSE SERVER

The database or data ware house server is
responsible for fetching the relevant data, based on the
user’s data mining request.

2.3 KNOWLEDGE BASE

This is the domain knowledge that is used to
guide the search or evaluate the interestingness of
resulting patterns. Such knowledge can include concept
hierarchies, used to organize attributes or attribute
values into different levels of abstraction. Knowledge
such as user beliefs, which can be used to assess a
pattern’s interestingness based on its unexpectedness,
may also be include.
2.4 DATA MINING ENGINE

This is essential to the data mining system and ideally
consists of a set of functional modules for tasks such as
characterization, association and correlation analysis,
classification, prediction, cluster analysis, outlier
analysis, and evolution analysis.

2.5 PATTERN EVALUATION MODEL

This component typically employs interestingness
measures and interacts with the data mining modules so
as to focus the search toward interesting patterns. It may
use interestingness thresholds to filter out discovered
patterns.

2.6 USER INTERFACE

This module communicates between users and the
data mining system, allowing the user to interact with
the system by specifying a data mining query or task
providing information to help focus the search, and
performing exploratory data mining based on the
intermediate data mining results.

3. RELATED WORKS

The prediction of fault in the software is being
studied from various viewpoints in order to estimate the
software reliability of the individual components and
also the probability of failure each time a software
component is being executed. The main purpose of
these models is to predict the fault in the software at the
cheaper rate.

Some researchers suggest the software fault
prediction as both machine learning based and statistical
based approaches. They investigate the previous studies
from metrics, methods, datasets, performance
evaluation metrics and experimental results in an easy
and effective manner. The aspect of feature subset
selection by using a generic backward input selection

Software Fault Prediction Models Using Augmented Bayesian Network Classifiers

goniv Publications Page 71

wrapper is investigated. The results are subjected to
rigorous statistical testing and indicate the ordinary least
squares regression in combination with logarithmic
transformation performs best. Another key finding is
that by subset of highly predictive attributes such as
project size, development and environmental related
attributes, typically a significant increase in estimation
accuracy can be obtained.

More recently, predicting defect prone software
components are an economically important activity and
so has received a good deal of attention. A general
framework for software defect prediction that supports
unbiased and comprehensive comparison between
competing prediction components has been empirically
illustrated. The defect predictor builds models
according to the evaluated learning schemes and
predicts software defects with new data according to the
constructed model.

Researchers have a adopted algorithms to evaluate
the performance metrics within a range of specific
parameters such as speed of learning, over fitting
avoidance and their accuracy. Besides these parameters
we have included their benefits and limitations to unveil
their hidden features and provide more details regarding
their performance. We have found the Augmented
Bayesian Network classifiers is the best as compared
with other algorithms that can be used for the prediction
of the fault in the software.

4. AUGMENTED BAYESIAN NETWORK
CLASSIFIERS

A Bayesian Network is a directed acyclic graph
(DAG), composed of E edges and V vertices which
represent joint probability distribution of a set of
variables. In this notation each vertex represents a
variable and each edge represents the causal or
associational influence of one variable to its successor
in the network.

Let X═{X1, X2….Xn} be n variables taking
continuous or discrete values. The probability
distribution of Xi is shown as P (Xi/axi) where axi’s
represent parents of Xi if any. When there are no
parents of Xi, then it is a prior probability distribution
and can be shown as P (Xi).

The joint probability distribution of X can be
calculated using chain rule.

P(X) ═ P (X1|X2, X3… Xn) P(X2, X3… Xn)

═ P(X1|X2,….,.Xn)P(X2|X3,…,Xn)P(X3,…,Xn)

═ P(X1|X2,….,Xn)P(X2|X3,…,Xn)…P(Xn-

1|Xn)P(Xn)

═πi=1 P (Xi|Xi+1… Xn)

Given the parents of Xi, other variables are
independent from Xi, so we can write the joint
probability distribution as

P(X) = πi=1 P (Xi|axi)

On the other hand, Bayes’ rule is used to calculate the
posterior probability of Xi in a Bayesian network based
on the evidence information present. We can calculate
probabilities either towards from causes to effects P
(Xi|E) or from effects to causes (P(E|Xi)). Calculating
probability of effects from causes is called causal
inference whereas calculating probability of causes
from effects is called diagnostic inference. Figure 1
shows a sample Bayesian network and conditional
probability tables. Assume that we would like to
investigate the effect of using experienced developers
(ED) and applying unit testing methodology (UT) on
defectiveness (FP). Furthermore, each variable can take
discrete values of on/off, that is developers are
experienced or not, unit testing used or not used.

In Bayesian network structure learning, the search space
is composed of all of the possible structures of directed
acyclic graphs based on the given variables (nodes).
Normally, it is very difficult to enumerate all of these
possible directed acyclic graphs without a heuristic
method. Because, when the number of nodes increases,
the search space grows exponentially and it is almost
impossible to search the whole space. Given a data set,
the K2 algorithm proposed by cooper and Herskovits,
heuristically searches for the most probable Bayesian
network structure. Based on the ordering of the nodes,
the algorithm network. If addition of a certain node Xj
to the set of parents of node Xi does not increase the
score of the Bayesian network,K2 stops looking for
parents of node Xi further. Since the ordering of the
nodes in the Bayesian network is known, the search
space is much smaller compared to the entire space that
needs to be searched without a heuristic method.
Furthermore, a known ordering ensures that there will
be no cycles in the Bayesian network, so there is no
need to check for cycles too. K2 algorithm takes a set of
n nodes; an initial ordering of the n nodes, the
maximum number of parents of any node denoted by u
and a database D of m cases as input and outputs a list
of parent nodes for every node in the network. For
every node in the network, the algorithm finds the set of
parents with the highest probability taking into
consideration the upper bound u for the maximum
number of parents a node can have.

Software Fault Prediction Models Using Augmented Bayesian Network Classifiers

goniv Publications Page 72

5. METHDOLOGY

In this paper we predict the fault in the software by
constructing the Augmented Bayesian network
classifiers and then finding out the Area under Curve
and the recently introduced H-measure value.

The proposed system consists of following
modules.

Preprocessing

Bayesian Network
Construction Markov
Blanket Feature Selection
Area Under Curve

H-measure

 The datasets are being selected and then
preprocessing step is done which is then undergone the
Markov Blanket Feature Selection .The Bayesian
network classifier is constructed to eliminate all the
dependent variables. The K2 algorithm adopts a
bottom-up search strategy, assuming equal prior
probabilities for all possible for all possible network
structures and considers all variables one by one,
assuming some ordering in the variables. The Max-Min
Hill-Climbing (MMHC) measure is asymptotically
following a x2 distribution with appropriate degrees of
freedom under the null hypothesis of conditional
independence, which allows calculation of a p-value
indicating the probability of falsely rejecting this null
hypothesis. The Area under Curve and H-measure value
is being evaluated to find out the probabilistic
influential relationships among the variables and then
finally the software fault is being predicted.

Fig 1. Dataflow diagram for software fault
prediction model

A.PREPROCESSING
A first important step in each data mining

exercise is pre-processing the data. Each observation in
the datasets consists of a unique ID, several static code
features and an error count. First, the data used to learn
and validate the models are selected and thus the ID as
well as attributes exhibiting zero variance are discarded.
Observations with a total line count of zero are deemed
logically incorrect and are removed. Each of the
datasets is randomly partitioned into two disjoint sets,
i.e. training and test set consisting of respectively 2/3
and 1/3 of the observations, using stratified sampling in
order to preserve the class distribution.

B.BAYESIAN NETWORK CONSTRUCTION

Bayesian networks are directed acyclic graphs
whose nodes represent random variables in the
Bayesian sense: they may be observable quantities,
latent variables, unknown parameters or hypotheses.
Edges represent conditional dependencies; nodes which
are not connected represent variables which are
conditionally independent of each other. Each node is
associated with a probability function that takes as input
a particular set of values for the node’s parent variables
and gives the probability of the variable represented by
the node. For example, if the parents are Boolean
variables then the probability function could be
represented by a table of 2m entries, one entry for each
of the 2m possible combinations of its parents being
true of false. Similar ideas may be applied to undirected
and possibly cyclic graphs such are called Markov
networks.

C.MARKOV BLANKET FEATURE SELECTION

The use of Markov blanket based feature
selection approach provides a natural solution to this
issue. The Markov blanket (MB) of a node y is the
union of y’s parents, y’s children and the parents of y’s
children and is the minimal variable subset conditioned
on which all other variables are independent of y. In
other words, no other variables than those contained in
the MB of y need to be observed to predict the value of
y. For instance, the value of x can be ignored when
predicting the value of y as it is the child of a parent of
y and thus is no part of the MB of y. The HITON
algorithm is used for the Markov blanket feature
selection, which adopts the same test of conditional
independence as the Max-Min Hill (MMHC) algorithm.

D.AREA UNDER CURVE

The single point metrics such as the Area under
the ROC curve (AUC) were proposed. Let F1(S) be the
probability density function of the scores for the classes
and F1(S) the corresponding cumulative distribution
function. The AUC can be regarded as a measure of
aggregated classification performance as it in some

Software Fault Prediction Models Using Augmented Bayesian Network Classifiers

goniv Publications Page 73

sense average performance over all possible thresholds.
Moreover, the AUC has an interesting statistical
interpretation in the sense that it is the probability that a
randomly chosen positive instance will be ranked higher
than a randomly chosen negative instance against the
opposite type of misclassification.

E.H-MEASURE

If the additional knowledge of the likely values
of c is available, Hand proposes using symmetric beta
distribution. As no specific costs have been specified in
the fault prediction literature, the H-measure will be
calculated with these default values. H-measure on the
other hand, has the benefit of explicitly, balancing the
losses arising from classifying fault-prone as not fault-
prone instances against the opposite type of
misclassification. In order to keep the participants
motivated, it is advised to release early and often thus
the cost of missing defects is perhaps lower than the
cost of delays due to unnecessary testing. As such, the
robustness of the H-measure with respect to changes in
the software development context is investigated. As no
specific costs have been specified in the fault prediction
literature, the H- measure will be calculated with these
default values. However, depending on the context , it
can be argued that misclassifying a faulty instance as
non fault-prone is more serious.

6. IMPLEMENTATION

In order to achieve the objectives and benefits
expected from the proposed system it is essential for the
people who will be involved to be confident of their
role in the new system. As system becomes more
complex, the need for education and training is more
and more important. Once the implementation plan is
decided, it is essential that the user of the system is
made familiar and comfortable with the environment. A
documentation providing the whole operations of the
system is being developed. The first maintenance
activity occurs because it is unreasonable to assume that
software testing will uncover all latent errors in a large
software system. During the use of any large program,
errors will occur and be reported to the developer. The
second activity contributes to a definition of
maintenance occurs because of the rapid change that is
encountered in every aspect of computing. The third
activity that may be applied to a definition of
maintenance occurs when a software package is
successful. As the software is used, recommendations
for new capabilities, modifications to existing functions
and general enhancement are received from users. The
fourth maintenance activity occurs when software is
changed to improve future maintainability or reliability
or to provide a better basis for future enhancements.

7. EXPERIMENTAL EVALUATION
The various induced models are being

evaluated in terms of their classification performance
and comprehensibility. A variety of performance
measures has been used to gauge the strength of the
classifiers. Augmented Bayesian Network Classifiers
whose ROC curve lies above the ROC curve of the
second classifier is superior and the point (0, 1)
corresponds to perfect classification.

= ∫ () () .

The AUC can be regarded as a measure of aggregated
classification performance as it in some averages
performance as it in some sense averages performance
over all possible thresholds. H-measure has the benefit
of explicitly, balancing the losses arising from
classifying fault-prone as not fault-prone instances
against the opposite type of misclassification. As such,
the robustness of the H-measure with respect to changes
in the software development context is investigated.

8. CONCLUSION AND FUTURE WORK

The broad goal of our research is to build a
model to analysis the causal relation between evaluable
metrics and software quality in software development.
Then enhance software development efficiency by
exploring the dependence between them. In this paper,
we apply Augmented Bayesian Network Classifiers to
solve the problem of classifying software modules as
defect-free or non-defect-free. The Augmented
Bayesian Network Classifier model provides a robust
mechanism to include diverse sources of data into the
analysis. The machine learning models predicted in this
paper can help the testing community to focus the
resources on the faulty parts of the software. The
developers can also consider the software design and
hence take necessary corrective actions. The fault
prediction models can help the testers in planning and
allocating resources in early phases of software
development.

In future, besides only use one project’s data is
not convictive enough, dataset in different software
project which focus on different functions tends to
present weight of each

matrix.

REFERENCES

[1]Karel Dejaeger, Thomas Verbraken and Bart
Baesens, "Toward Comprehensible Software Prediction
Models Using Bayesian Network Classifiers”, vol.39,
2013

Software Fault Prediction Models Using Augmented Bayesian Network Classifiers

goniv Publications Page 74

[2]C.Catal, “Software Fault Prediction: A Literature
Review and Current Trends, “Expert Systems with
Applications, vol.38,pp. 4626-4636, 2011.

[3]K.Dejaeger, W.Verbeke, D.Martens, and B.Baesens,
“Data Mining Techniques for software Effort
Estimation :A Comparative Study,”IEEE Trans.
Software Eng., vol. 38,no.2,pp. 375-397, Mar./Apr.
2011.

[4]P.Flach, J.Hernandez-Orallo and C.Ferri, “A
Coherent interpretation of AUC as a Measure of
Aggregated Classification Performance,”Proc. 28th Int’l
Conf.Machine Learning, 2011.

[5]T.Menzies, Z.Milton, B.Turhan, B.Cukic, Y.Jiang
and A.Bener, “Defect Prediction from Static Code
Features: Current Results, Limitations, New
Approaches,” Automated Software Eng., pp.1-33, 2010.

[6]M.Baojun, K.Dejaeger, J.Vanthienen and B.Baesens,
“Software Defect Prediction Based on Association Rule
Classification, “Proc. Int’l Conf.Electronic-Buisness
Intelligence, pp.396-402, 2010.

[7]Y.Jiang and B.Cukic, “Misclassification Cost-
Sensitive Fault Prediction Models,” Proc. Fifth Int’l
Conf. Predictor Models in Software Eng., 2009.

[8]C.Catal and B.Diri, “A Systematic Review of
Software Fault Prediction Studies,” Expert Systems
with Applications, vol.36, no.4, pp. 7346-7354, 2009.

[9]S.Ali and K.Smith, “On Learning Algorithm
Selection for Classification,” Applied Soft Computing,
vol.6, no.2, pp.119-138, 2006.

[10]D.Chickering, C.Meek and D.Heckerman, “Large-
Sample Learning of Bayesian Networks is NP-Hard,”
J.Machine Learning Research, vol.5, pp.1287-1330,
2004.

